Files
poker_task1/cross_validation/cross_validation.py
2025-09-28 18:09:17 +08:00

392 lines
16 KiB
Python

#!/usr/bin/env python3
import numpy as np
from typing import List, Dict, Tuple
from scipy.stats import wasserstein_distance
import sys
from .parse_data import XTaskDataParser
from shortdeck.gen_hist import ShortDeckHistGenerator
import matplotlib.pyplot as plt
class DataValidator:
def __init__(self, data_path: str = "ehs_data"):
self.parser = XTaskDataParser(data_path)
self.generator = ShortDeckHistGenerator()
print(" DataValidator初始化完成")
print(f" 生成器短牌型大小: {len(self.generator.full_deck)}")
def validate_river_samples(self, max_samples: int = 20) :
# print(f"\n 验证river_EHS样本 (最大样本数: {max_samples})")
try:
print(" 解析导出的river数据...")
print('='*60)
river_records = self.parser.parse_river_ehs_with_cards(max_records=max_samples)
if not river_records:
return {'error': '没有解析到river记录', 'success': False}
sample_records = river_records
print(f" 选择 {len(sample_records)} 个样本进行验证")
matches = 0
errors = 0
differences = []
for i, record in enumerate(sample_records):
try:
player_cards = record.player_cards
board_cards = record.board_cards
src_river_ehs = record.ehs
cur_river_ehs = self.generator.generate_river_ehs(player_cards, board_cards)
ehs_difference = abs(src_river_ehs - cur_river_ehs)
player_str = " ".join(str(c) for c in player_cards)
board_str = " ".join(str(c) for c in board_cards)
print(f" 样本 {i+1}: [{player_str}] + [{board_str}]")
print(f" 原始EHS: {src_river_ehs:.6f}")
print(f" 重算EHS: {cur_river_ehs:.6f}")
print(f" 差异: {ehs_difference:.6f}")
# 判断匹配 (允许小的数值差异)
tolerance = 1e-6
if ehs_difference < tolerance:
matches += 1
else:
differences.append(ehs_difference)
except Exception as e:
errors += 1
if errors <= 3:
print(f" 样本 {i+1} 计算失败: {e}")
# 统计结果
total_samples = len(sample_records)
match_rate = matches / total_samples if total_samples > 0 else 0
mean_diff = np.mean(differences) if differences else 0
max_diff = np.max(differences) if differences else 0
result = {
'total_samples': total_samples,
'matches': matches,
'match_rate': match_rate,
'mean_difference': mean_diff,
'max_difference': max_diff,
'errors': errors,
'success': match_rate > 0.8 and mean_diff < 0.05
}
print(f" River验证完成:")
print('='*60)
print(f" 匹配数: {matches}/{total_samples} ({match_rate:.1%})")
print(f" 平均差异: {mean_diff:.6f}")
print(f" 最大差异: {max_diff:.6f}")
return result
except Exception as e:
print(f" River验证失败: {e}")
return {'error': str(e), 'success': False}
def print_sample_record(self, i, src_hist, cur_hist, player_cards, board_cards):
player_str = " ".join(str(c) for c in player_cards)
board_str = " ".join(str(c) for c in board_cards)
print("="*60)
print(f"样本 {i+1}: [{player_str}] + [{board_str}]")
print("bin src src_norm cur cur_norm")
src_hist = np.array(src_hist)
cur_hist = np.array(cur_hist)
src_hist_norm = src_hist / src_hist.sum() if src_hist.sum() > 0 else src_hist
cur_hist_norm = cur_hist / cur_hist.sum() if cur_hist.sum() > 0 else cur_hist
for i in range(min(len(src_hist), 30)):
if src_hist[i] > 0 or cur_hist[i] > 0:
print(f"bin[{i}], {src_hist[i]:8.3f}, {src_hist_norm[i]:8.3f}, {cur_hist[i]:8.3f}, {cur_hist_norm[i]:8.3f}")
def validate_turn_samples(self, max_samples: int = 10):
# print(f"\n 验证turn_HIST样本 (最大样本数: {max_samples})")
try:
print(" 解析导出的Turn数据...")
print('='*60)
print('='*60)
turn_records = self.parser.parse_turn_hist_with_cards(max_records=max_samples)
if not turn_records:
return {'error': '没有解析到Turn记录', 'success': False}
print(f" 解析到 {len(turn_records)} 个Turn样本")
low_emd_count = 0
emd_distances = []
errors = 0
for i, record in enumerate(turn_records):
try:
player_cards = record.player_cards
board_cards = record.board_cards
src_hist = np.array(record.bins)
cur_hist = self.generator.generate_turn_histogram(
player_cards, board_cards, num_bins=len(src_hist)
)
cur_hist = np.array(cur_hist)
# 归一化
src_hist_norm = src_hist / src_hist.sum() if src_hist.sum() > 0 else src_hist
cur_hist_norm = cur_hist / cur_hist.sum() if cur_hist.sum() > 0 else cur_hist
# 计算EMD距离
emd_dist = wasserstein_distance(
range(len(src_hist_norm)),
range(len(cur_hist_norm)),
src_hist_norm,
cur_hist_norm
)
low_emd_count += 1 if emd_dist < 0.2 else 0
errors += 1 if emd_dist >= 0.2 else 0
emd_distances.append(emd_dist)
self.print_sample_record(i, src_hist, cur_hist, player_cards, board_cards)
# 画图显示
plt.plot(src_hist, label='src', marker='o')
plt.plot(cur_hist, label='cur', marker='x')
plt.title(f"turn_hist_emd={emd_dist:.6f}")
plt.xlabel("Bins")
plt.ylabel("Frequency")
plt.legend()
plt.show()
except Exception as e:
errors += 1
if errors <= 3:
print(f" 样本 {i+1} 计算失败: {e}")
# 统计结果
total_samples = len(turn_records)
low_emd_rate = low_emd_count / total_samples if total_samples > 0 else 0
mean_emd = np.mean(emd_distances) if emd_distances else float('inf')
result = {
'total_samples': total_samples,
'low_emd_count': low_emd_count,
'low_emd_rate': low_emd_rate,
'mean_emd_distance': mean_emd,
'emd_distances': emd_distances,
'errors': errors,
'success': low_emd_rate > 0.6 and mean_emd < 0.5
}
print(f" Turn验证完成:")
print(f" 低EMD数: {low_emd_count}/{total_samples} ({low_emd_rate:.1%})")
print(f" 平均EMD: {mean_emd:.6f}")
return result
except Exception as e:
print(f" Turn验证失败: {e}")
return {'error': str(e), 'success': False}
def validate_flop_samples(self, max_samples: int = 5):
# print(f"\n 验证Flop直方图样本 (最大样本数: {max_samples})")
try:
print(" 解析导出Flop数据...")
print('='*60)
print('='*60)
print('='*60)
flop_records = self.parser.parse_flop_hist_with_cards(max_records=max_samples)
if not flop_records:
return {'error': '没有解析到Flop记录', 'success': False}
print(f" 解析到 {len(flop_records)} 个Flop样本")
low_emd_count = 0
emd_distances = []
errors = 0
for i, record in enumerate(flop_records):
try:
print(f" 处理样本 {i+1}/{len(flop_records)}...")
player_cards = record.player_cards
board_cards = record.board_cards
src_hist = np.array(record.bins)
cur_hist = self.generator.generate_flop_histogram(
player_cards, board_cards, num_bins=len(src_hist)
)
cur_hist = np.array(cur_hist)
src_hist_norm = src_hist / src_hist.sum() if src_hist.sum() > 0 else src_hist
cur_hist_norm = cur_hist / cur_hist.sum() if cur_hist.sum() > 0 else cur_hist
# 计算EMD距离
emd_dist = wasserstein_distance(
range(len(src_hist_norm)),
range(len(cur_hist_norm)),
src_hist_norm,
cur_hist_norm
)
emd_distances.append(emd_dist)
low_emd_count += 1 if emd_dist < 10 else 0
errors += 1 if emd_dist >= 10 else 0
# 显示详细信息
player_str = " ".join(str(c) for c in player_cards)
board_str = " ".join(str(c) for c in board_cards)
print(f" 样本 {i+1}: [{player_str}] + [{board_str}]")
print(f" 原始直方图: bins={len(src_hist)}, sum={src_hist.sum():.3f}, 非零bins={np.count_nonzero(src_hist)}")
print(f" 生成直方图: bins={len(cur_hist)}, sum={cur_hist.sum():.3f}, 非零bins={np.count_nonzero(cur_hist)}")
print(f" 归一化后EMD距离: {emd_dist:.6f}")
print("bin src src_norm cur cur_norm")
for i in range(min(len(src_hist), 30)):
if src_hist[i] > 0 or cur_hist[i] > 0:
print(f"bin[{i}], {src_hist[i]:8.3f}, {src_hist_norm[i]:8.3f}, {cur_hist[i]:8.3f}, {cur_hist_norm[i]:8.3f}")
self.print_sample_record(i, src_hist, cur_hist, player_cards, board_cards)
# 画图显示
plt.plot(src_hist, label='src', marker='o')
plt.plot(cur_hist, label='cur', marker='x')
plt.title(f"flop_hist_emd={emd_dist:.6f}")
plt.xlabel("Bins")
plt.ylabel("Frequency")
plt.legend()
plt.show()
except Exception as e:
errors += 1
if errors <= 3:
print(f" 样本 {i+1} 计算失败: {e}")
# 统计结果
total_samples = len(flop_records)
low_emd_rate = low_emd_count / total_samples if total_samples > 0 else 0
mean_emd = np.mean(emd_distances) if emd_distances else float('inf')
result = {
'total_samples': total_samples,
'low_emd_count': low_emd_count,
'low_emd_rate': low_emd_rate,
'mean_emd_distance': mean_emd,
'emd_distances': emd_distances,
'errors': errors,
'success': low_emd_rate > 0.4 and mean_emd < 0.5
}
print(f" Flop验证完成:")
print(f" 低EMD数: {low_emd_count}/{total_samples} ({low_emd_rate:.1%})")
print(f" 平均EMD: {mean_emd:.6f}")
return result
except Exception as e:
print(f" Flop验证失败: {e}")
return {'error': str(e), 'success': False}
def run_full_validation(self, river_samples: int = 20, turn_samples: int = 10, flop_samples: int = 5) -> Dict:
print(" 导出数据EHS验证")
print("*"*60)
# 执行各阶段验证
results = {}
results['river'] = self.validate_river_samples(river_samples)
results['turn'] = self.validate_turn_samples(turn_samples)
results['flop'] = self.validate_flop_samples(flop_samples)
print(f"\n{'='*60}")
print(" 验证完毕")
print(f"{'='*60}")
passed_stages = 0
total_stages = 3
# River结果
print(f"\n RIVER阶段:")
if 'error' not in results['river']:
status = " 通过" if results['river']['success'] else " 失败"
print(f" 验证结果: {status}")
print(f" 样本数量: {results['river']['total_samples']}")
print(f" 匹配率: {results['river']['match_rate']:.1%}")
print(f" 平均差异: {results['river']['mean_difference']:.6f}")
if results['river']['success']:
passed_stages += 1
else:
print(f" 错误: {results['river']['error']}")
# Turn结果
print(f"\n TURN阶段:")
if 'error' not in results['turn']:
status = " 通过" if results['turn']['success'] else " 失败"
print(f" 验证结果: {status}")
print(f" 样本数量: {results['turn']['total_samples']}")
print(f" 低EMD率: {results['turn']['low_emd_rate']:.1%}")
print(f" 平均EMD: {results['turn']['mean_emd_distance']:.6f}")
print(f" 抽样EMD: {[emd for emd in results['turn']['emd_distances'][:5]]}")
if results['turn']['success']:
passed_stages += 1
else:
print(f" 错误: {results['turn']['error']}")
# Flop结果
print(f"\n FLOP阶段:")
if 'error' not in results['flop']:
status = " 通过" if results['flop']['success'] else " 失败"
print(f" 验证结果: {status}")
print(f" 样本数量: {results['flop']['total_samples']}")
print(f" 低EMD率: {results['flop']['low_emd_rate']:.1%}")
print(f" 平均EMD: {results['flop']['mean_emd_distance']:.6f}")
print(f" 抽样EMD: {[emd for emd in results['flop']['emd_distances'][:5]]}")
if results['flop']['success']:
passed_stages += 1
else:
print(f" 错误: {results['flop']['error']}")
# 总体结果
passed_stages = 0
total_stages = 3
if results.get('river') and results['river'].get('success', False):
passed_stages += 1
if results.get('turn') and results['turn'].get('success', False):
passed_stages += 1
if results.get('flop') and results['flop'].get('success', False):
passed_stages += 1
overall_rate = passed_stages / total_stages
# print(f"\n 总体验证通过率: {passed_stages}/{total_stages} ({overall_rate:.1%})")
# if overall_rate >= 0.7:
# print(" 数据验证成功!短牌型生成器与解析数据基本一致。")
# else:
# print(" 验证存在问题,生成器可能与实际数据不匹配,需要调试。")
return {
'results': results,
'passed_stages': passed_stages,
'total_stages': total_stages,
'overall_success': overall_rate >= 0.7
}